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Blocking	Bandits

Techniques:	Coupling	and	Free	Exploration

Greedy	Algorithm

UCB-Greedy	AlgorithmExisting	Approaches

Offline	Optimization

Applications

1 2 KArms:
Mean	Rewards: 𝜇" 𝜇# 𝜇$
Fixed	Delays: 𝐷" 𝐷# 𝐷$…

…

…

Each	time	arm	𝒊 is	played,	arm	𝒊	is	
blocked	for	the	next	(𝑫𝒊 − 𝟏) time	steps

𝜇. unknown
𝐷. known

Objective:Maximize	the	expected	reward	in	T	time	slots

𝐔𝐧𝐢𝐭	𝐃𝐞𝐥𝐚𝐲: ∀𝑖, 𝐷. = 1 ≡Multi	armed	bandit	problem

Job	scheduling	with	Maximum	QoS
• Arms	are	servers/machines	
• Each	timeslot	one	homogeneous task	arrives
• Server	𝑖	has	delay	𝐷. and	quality	of	service	(QoS)	𝜇.
(Service	time	varies	across	servers)

Ad	Placement	with	Gap	Constraint
• Arms	are	users/subscribers
• Each	timeslot	one	homogeneous ad	needs	to	be	placed
• User	𝑖	requires	a	gap	of	𝐷. and	mean	CTR	of	𝜇.
(Avoid	annoyance,	engagement	time)

Combinatorial	Semi-Bandits	
• Take	decisions	for	a	block	of	time and	observe	all	rewards
• Approaches	[Y.	Gai et	al.	12,	B.	Kveton et	al.	14,	…]
• Block	length	=	𝑙𝑐𝑚({𝐷.: 	𝑖	 = 	1	𝑡𝑜	𝐾})

Existing	Methods	are	
Computationally	Intractable!

Online	Markov	Decision	Processes	(MDP)
• MDP	with	known	transitions, unknown	random	reward
• Approaches	[	P.	Auer	et	al.	07,	A.	Tewari et	al.		08,	

G.	Neu et	al.		09,	A	Zimin et	al.	13,…]
• State	Space		=		∏ 𝐷.�

.∈[$] ,	Horizon	=	𝑙𝑐𝑚({𝐷.: 	𝑖	 = 	1	𝑡𝑜	𝐾})

Future	Work

2 months

• The	mean	rewards	of	the	arms	(𝝁𝒊) are	known	

• Blocking	Constraint:	Each	𝐷. blocks	at	most	one	play	of	arm		𝑖

• Optimal	Expected	Reward	(𝐄[𝐑]): 𝐎𝐏𝐓 = 𝐦𝐚𝐱
{𝒂𝒕:	𝒕V𝑻}	

𝒔.𝒕. ∗ 	𝒉𝒐𝒍𝒅𝒔	

∑ 𝝁𝒂𝒕	
𝑻
𝒕`𝟏 	

Combinatorial	optimization	problem	across	timeslots

Result 1: NO pseudo-polynomial	time	algorithm	
given	randomized	Exponential	Time	Hypothesis	holds

At	each	time,	Play	the	Available	Arm with	Highest	𝝁𝒊
Bad	News:	There	are	instances	where	Greedy	

achieves	3/4-th of	the	optimal	reward

Result 2 : Greedy is (1-1/e) Optimal

Online	Optimization

• The	mean	rewards	of	the	arms	(𝝁𝒊) are	unknown

• Empirical	mean	of	arm i at	time		𝒕, 𝝁𝒊a(𝒕)

• Number	of	times	arm	arm	i played	at	time 𝐭, 	 𝑵𝒊(𝒕)

• UCB	of arm	i	at	time		𝒕, 𝒖𝒄𝒃𝒊 𝒕 = 𝝁𝒊f 𝒕 + 𝟖	𝒍𝒐𝒈𝒕
𝑵𝒊 𝒕

�

At	time	t,		Play	the	Available	Arm with	Highest	𝒖𝒄𝒃𝒊(𝒕)

𝜶-Regret: (𝜶	×	𝐄[𝑹] of	OPT	- 𝐄[𝑹] of	Online	Alg)

Result	 3:	(1-1/e)-Regret	of	UCB-Greedy	equals	

𝑶 𝟏
𝝐
	𝒍𝒐𝒈 𝟏

𝝐
+ 𝟑𝟐	𝑲𝒈 𝑲r𝑲𝝐∗

𝒎𝒊𝒏 𝒊u𝑲𝝐∗	𝒕𝒐	𝑲𝒈
	𝚫𝐢,𝐢w𝟏	

𝒍𝒐𝒈(𝑻)

• Sorted Means	𝝁𝟏 ≥ 𝝁𝟐 ≥ ⋯ ≥ 𝝁𝑲,	Gap	𝚫𝒊,𝒋 = 𝝁𝒊 − 𝝁𝒋

• Greedy	plays	arm	𝟏	𝒕𝒐	𝑲𝒈	

• Arms	to	cover 𝟏 − 𝝐 ,		𝑲𝝐
∗= 	min{𝐢: ∑ 𝑫𝒋r𝟏�

𝒋`𝟏	𝒕𝒐	𝒊 ≥ 𝟏 − 𝝐}

Result		4:	Lower Bound				
𝑲r𝑲𝒈

𝚫𝐊𝐠,𝐊𝐠w𝟏	
𝒍𝒐𝒈 𝑻 + 𝑶(𝟏)

Hard	System	Constraints	on	
Inter	Action	Distance	

• Stochastic	Unknown	Delay
•Multi-type	Extension:
In	each	time	slot	an	i.i.d.	type	is	chosen	by	nature.	
For	each	type	j,	arm	i has	delay	Dij and	reward	µij

𝝁𝑲𝒈

𝝁𝑲𝝐∗

𝝁𝟏	
𝝁𝑲	

These	Gaps	
do	not		influence
the	regret	bound

Free	explore:	Due	to	blocking	of	higher	ranked	arms,	
each	arm	𝑖 ∈ 1, 𝐾�∗ played	≥ 𝑐𝑇 times	up	to	time	T

• Decision	sets	of	Greedy	and	UCB-Greedy	do	not	converge	
Couple	Each	Arm	Separately!

Synthetic	Experiments

Time

R
eg
re
t

• Bernoulli	Reward	with	Fixed	Mean

• Greedy	plays	arm	1	𝑡𝑜	𝐾�	

• 𝑲∗ = 	min{𝐢: ∑ 𝑫𝒋r𝟏�
𝒋`𝟏	𝒕𝒐	𝒊 ≥ 𝟏}


