Blocking Bandits
Soumya Basu\#, Rajat Sen*, Sujay Sanghavi*,\# and Sanjay Shakkottai\#
\#The University of Texas at Austin, *Amazon

Blocking Bandits Model

| Arms: | 1 | 2 | \cdots | K | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mean Rewards: | μ_{1} | μ_{2} | \cdots | μ_{K} | μ_{i} unknown |
| Fixed Delays: | D_{1} | D_{2} | \ldots | D_{K} | D_{i} known |

Each time arm i is played, arm i is blocked for the next ($D_{i}-1$) time steps
Objective: Maximize the expected reward in T time slots
Unit Delay: $\forall i, D_{i}=1 \equiv$ Multi armed bandit problem

Applications

Job scheduling with Maximum QoS

- Arms are servers/machines
- Each timeslot one homogeneous task arrives
- Server i has delay D_{i} and quality of service (QoS) μ_{i}
(Service time varies across servers)

Hard System Constraints on Inter Action Distance

Ad Placement with Gap Constraint

- Arms are users/subscribers

- Each timeslot one homogeneous ad needs to be placed
- User i requires a gap of D_{i} and mean CTR of μ_{i}
(Avoid annoyance, engagement time)

Existing Approaches Existing Methods are Computationally Intractable!

Combinatorial Semi-Bandits

- Take decisions for a block of time and observe all rewards
- Approaches [Y. Gai et al. 12, B. Kveton et al. 14, ...]
- Block length $=\operatorname{lcm}\left(\left\{D_{i}: i=1\right.\right.$ to K $\}$)

Online Markov Decision Processes (MDP)

- MDP with known transitions, unknown random reward
- Approaches [P. Auer et al. 07, A. Tewari et al. 08,
G. Neu et al. 09, A Zimin et al. 13,...]
- State Space $=\prod_{i \in[K]} D_{i}$, Horizon $=\operatorname{lcm}\left(\left\{D_{i}: i=1\right.\right.$ to $\left.\left.K\right\}\right)$

Offline Optimization

- The mean rewards of the arms $\left(\boldsymbol{\mu}_{\boldsymbol{i}}\right)$ are known
- Blocking Constraint: Each D_{i} blocks at most one play of arm i

$$
\text { - Optimal Expected Reward (E[R]): OPT }=\max _{\substack{\left\{a_{t}: t \leq T\right\} \\ \text { s.t.*)holds }}} \sum_{t=1}^{T} \mu_{a_{t}}
$$

Combinatorial optimization problem across timeslots

Result 1: NO pseudo-polynomial time algorithm given randomized Exponential Time Hypothesis holds

Greedy Algorithm

At each time, Play the Available Arm with Highest $\boldsymbol{\mu}_{\boldsymbol{i}}$
Bad News: There are instances where Greedy achieves 3/4-th of the optimal reward

$$
\text { Result } 2 \text { : Greedy is (1-1/e) Optimal }
$$

Online Optimization

- The mean rewards of the arms $\left(\boldsymbol{\mu}_{\boldsymbol{i}}\right)$ are unknown

$$
\alpha \text {-Regret: }(\alpha \times \mathrm{E}[R] \text { of OPT }-\mathrm{E}[R] \text { of Online Alg) }
$$

UCB-Greedy Algorithm

At time t, Play the Available Arm with Highest $u c b_{i}(t)$

- Empirical mean of arm i at time $\boldsymbol{t}, \widehat{\boldsymbol{\mu}_{\boldsymbol{i}}}(\boldsymbol{t})$
- Number of times arm arm i played at time $\mathbf{t}, \quad \boldsymbol{N}_{\boldsymbol{i}}(\boldsymbol{t})$
- UCB of arm i at time $\boldsymbol{t}, \boldsymbol{u c} \boldsymbol{b}_{\boldsymbol{i}}(\boldsymbol{t})=\widehat{\boldsymbol{\mu}_{\boldsymbol{i}}}(\boldsymbol{t})+\sqrt{\left(\frac{8 \log t}{N_{i}(t)}\right)}$

Synthetic Experiments

- Bernoulli Reward with Fixed Mean - Greedy plays arm 1 to K_{g}
- $K^{*}=\min \left\{\mathbf{i}: \sum_{j=1 \text { to } i} D_{j}^{-1} \geq 1\right\}$

Performance Guarantees

- Sorted Means $\mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{K}$, Gap $\Delta_{i, j}=\mu_{i}-\mu_{j}$
- Greedy plays arm 1 to K_{g}
- Arms to cover $(\mathbf{1}-\boldsymbol{\epsilon}), K_{\epsilon}^{*}=\min \left\{\mathbf{i}: \sum_{j=1 \text { to } i} \boldsymbol{D}_{\boldsymbol{j}}^{-1} \geq \mathbf{1}-\boldsymbol{\epsilon}\right\}$

$$
\begin{aligned}
& \text { Result 3: (1-1/e)-Regret of UCB-Greedy equals } \\
& \qquad O\left(\frac{1}{\epsilon} \log \left(\frac{1}{\epsilon}\right)\right)+\frac{32 K_{g}\left(K-K_{\epsilon}^{*}\right)}{\min _{\left\{i=K_{\epsilon}^{*} t o K_{g}\right\}} \Delta_{i, i+1}} \log (T)
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { These Gaps } \\
\text { do not influence } \\
\text { the regret bound }
\end{array}
\end{aligned}
$$

$$
\text { Result 4: Lower Bound } \frac{\left(K-K_{g}\right)}{\Delta_{\mathrm{K}_{\mathrm{g}} \mathrm{Kg}+1}} \log (T)+O(1)
$$

Techniques: Coupling and Free Exploration

- Decision sets of Greedy and UCB-Greedy do not converge

Couple Each Arm Separately!

Free explore: Due to blocking of higher ranked arms, each arm $i \in\left[1, K_{\epsilon}^{*}\right]$ played $\geq c T$ times up to time T

Future Work

- Stochastic Unknown Delay
- Multi-type Extension:

In each time slot an i.i.d. type is chosen by nature.
For each type j , arm i has delay D_{ij} and reward μ_{ij}

